Journal of Organometallic Chemistry, 145 (1978) 49–55 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

# A CATIONIC DICARBENE COMPLEX OF IRON. THE CRYSTAL STRUCTURE OF $[Fe(CO)_2(S_2CNMe_2)(CNMe_2)_2S]PF_6 \cdot \frac{1}{2}C_2H_4Cl_2$

# W.K. DEAN \* and D.G. VANDERVEER \*\* Department of Chemistry, Emory University, Atlanta, GA, 30322 (U.S.A.) (Received August 8th, 1977)

#### Summary

The structure of the compound  $[Fe(CO)_2(S_2CNMe_2)(CNMe_2)_2S]PF_6 \cdot \frac{1}{2}C_2H_4Cl_2$ has been determined by X-ray crystallography. The compound crystallizes in space group C2/c with eight formula units in a unit cell of dimensions *a* 23.939(18), *b* 15.771(7), *c* 12.314(4) Å,  $\beta$  92.01(5)°. Full-matrix least-squares refinement of 2084 counter data yielded R = 0.051. The complex cation contains an unusual chelating dicarbene ligand, and the structure of this complex is compared with related species. The bonding properties of the dicarbene ligand are discussed.

## Introduction

In an earlier paper we have reported the synthesis of the compounds  $[Fe(CO)_2-(S_2CNMe_2)(CNMe_2)_2S]X (X = PF_6^-, BPh_4^-) [1] by the reaction of dimethylthio$  $carbamoyl chloride, ClCSNMe_2, with <math>Fe(CO)_4^{2^-}$ . Because of their ambiguous NMR spectra and uncertainty as to their electrolyte type, the full characterization of these compounds required an X-ray crystal structure determination, which revealed the presence of an unusual chelating dicarbene ligand. The details of the structure determination of the hexafluorophosphate salt (as the hemi-(1,2dichloroethane) solvate) are reported here.

#### Experimental

Crystals of  $[Fe(CO)_2(S_2CNMe_2)(CNMe_2)_2S]PF_6 \cdot \frac{1}{2}C_2H_4Cl_2$  were obtained by crystallization from 1,2-dichloroethane/ether as yellow needles. A suitable crystal was mounted on a glass fiber and placed on a Syntex P2<sub>1</sub> automated diffractometer. Centering and refinement of fifteen high-angle reflections yielded

<sup>\*</sup> To whom correspondence should be addressed.

<sup>\*\*</sup> Department of Chemistry, Georgia Institute of Technology, Atlanta, Georgia 30332 (U.S.A.)

lattice and orientation parameters, and the observed systematic absences (h0l, l odd; hkl, h + k odd) identified the space group as Cc or C2/c. The statistical distribution of intensities indicated a centrosymmetric space group, so C2/c was chosen, and this choice was confirmed by the successful solution and refinement of the structure. Further crystal data are given in Table 1.

50

TABLE 1

Intensity data were collected using graphite-monochromatized Mo- $K_{\overline{\alpha}}$  radiation ( $\lambda$  0.71073 Å) for reflections for which  $k \ge 0$ ,  $l \ge 0$ ,  $h + k \ne 2n + 1$ ,  $5^{\circ} \ge 2\theta \ge 50^{\circ}$ , in the bisecting mode with stationary background counts at the beginning and end of each scan. The data were corrected for Lorentz and polarization effects. Standard deviations were assigned to the intensities [2] using p = 0.05. Three test reflections were taken every 100 reflections to monitor crystal and electronic stability; no decay was noted. Of a total of 4495 reflections collected, 2084 were considered observed ( $I \ge 3\sigma(I)$ ); only observed reflections were used in the structure solution and refinement. No corrections were made for absorption.

The structure was solved by direct methods. Normalized structure factors (E's) were calculated using overall scale and temperature factors obtained from a Wilson plot. The 499 reflections with highest E's were used as input to the computer program MULTAN. Reflections in the starting set were (2556), (4129), (1356),  $(\overline{10}68)$ , with the first two used for origin specification. An electron density map based on the phase set having the highest figure of merit clearly showed the iron and three sulfur atoms. After isotropic least-squares refinement of these four atoms, a Fourier synthesis phased on their locations revealed all nonhydrogen atoms; the presence of the chlorine and carbon atoms of the solvent molecule was confirmed after isotropic refinement of the other atoms.

Refinement of the structure proceeded smoothly. The final model used anisotropic thermal parameters for all nonhydrogen atoms (262 variables; data-toparameter ratio 7.95/1). The hydrogen atoms were not located. The final discrepancy factors (conventionally defined) were R = 0.051,  $R_w = 0.067$ . The error in an observation of unit weight was 1.63. A final difference Fourier synthesis showed a maximum electron density of 0.23 e Å<sup>-3</sup>.

All least-squares cycles were based on the minimization of  $\sum w ||F_0| - |F_c||^2$ 

| CRYSTAL DATA              |                                                                                                                               |  |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|
| Formula (mol. wt.)        | C <sub>11</sub> H <sub>18</sub> O <sub>2</sub> N <sub>3</sub> S <sub>3</sub> PF <sub>6</sub> Fe · CH <sub>2</sub> Cl (570.75) |  |
| Crystal size              | $0.80 \times 0.10 \times 0.10 \text{ mm}$                                                                                     |  |
| Space group               | C2/c                                                                                                                          |  |
| a                         | 23.939(18) Å                                                                                                                  |  |
| Ь                         | 15.771(7) Å                                                                                                                   |  |
| c                         | 12.314(4) Å                                                                                                                   |  |
| ß                         | 92.01(5)°                                                                                                                     |  |
| V                         | 4646(4) Å <sup>3</sup>                                                                                                        |  |
| Z                         | 8                                                                                                                             |  |
| deale                     | $1.631 \text{ g cm}^{-3}$                                                                                                     |  |
| dexp(flotation)           | 1.62                                                                                                                          |  |
| Food                      | 2312                                                                                                                          |  |
| μ                         | $11.71 \text{ cm}^{-1}$                                                                                                       |  |
| Estimated range of        |                                                                                                                               |  |
| transmission coefficients | 0.87—0.91                                                                                                                     |  |

#### TABLE 2. FINAL ATOMIC PARAMETERS A. ATOMIC COORDINATES

| Atom  | x         | У          | z          |  |
|-------|-----------|------------|------------|--|
| Fe    | 0.2240(1) | 0.0111(1)  | 0.0926(1)  |  |
| S(1)  | 0.2271(1) | 0.0796(1)  | 0.2300(2)  |  |
| S(2)  | 0.3039(1) | 0.0611(1)  | 0.0079(2)  |  |
| S(3)  | 0.2071(1) | -0.1152(1) | 0.2557(2)  |  |
| 0(1)  | 0.1781(3) | -0.0840(4) | -0.0934(4) |  |
| O(2)  | 0.1769(3) | 0.1773(4)  | 0.0329(5)  |  |
| N(1)  | 0.3740(3) | 0.1365(5)  | 0.1528(6)  |  |
| N(2)  | 0.1184(3) | -0.0170(4) | 0.2227(5)  |  |
| N(3)  | 0.2963(3) | -0.1482(4) | 0.1442(5)  |  |
| C(1)  | 0.1958(3) | -0.0459(5) | -0.0210(7) |  |
| C(2)  | 0.1936(4) | 0.1126(6)  | 0.0566(6)  |  |
| C(3)  | 0.3258(4) | 0.0981(5)  | 0.1335(6)  |  |
| C(4)  | 0.4139(4) | 0.1482(8)  | 0.0666(9)  |  |
| C(5)  | 0.3901(4) | 0.1674(7)  | 0.2647(8)  |  |
| C(6)  | 0.1695(3) | -0.0312(5) | 0.1939(5)  |  |
| C(7)  | 0.0835(4) | 0.0510(6)  | 0.1720(7)  |  |
| C(8)  | 0.0897(3) | -0.0680(6) | 0.3065(6)  |  |
| C(9)  | 0.2557(3) | -0.0945(5) | 0.1549(6)  |  |
| C(10) | 0.3335(4) | 0.1450(7)  | 0.0478(8)  |  |
| C(11) | 0.3074(4) | -0.2192(6) | 0.2231(9)  |  |
| Р     | 0.0389(1) | 0.1853(1)  | 0.4979(2)  |  |
| F(1)  | 0.0676(3) | 0.1972(4)  | 0.3847(4)  |  |
| F(2)  | 0.0990(2) | 0.1777(3)  | 0.5565(4)  |  |
| F(3)  | 0.0119(3) | 0.1777(4)  | 0.6119(5)  |  |
| F(4)  | 0.0212(2) | 0.1949(4)  | 0.4395(5)  |  |
| F(5)  | 0.0408(2) | 0.2849(3)  | 0.5143(4)  |  |
| F(6)  | 0.0385(3) | 0.0859(3)  | 0.4808(6)  |  |
| Cl    | 0.4279(3) | -0.0511(3) | 0.2744(4)  |  |
| C(12) | 0.4787(6) | -0.1311(9) | 0.2866(14) |  |

#### B. ANISOTROPIC THERMAL PARAMETERS<sup>a</sup>

|       | B <sub>11</sub> | B 22    | B 33     | B <sub>12</sub> | B 13    | B <sub>23</sub> |
|-------|-----------------|---------|----------|-----------------|---------|-----------------|
| Fe    | 2.55(6)         | 3.00(5) | 2.55(4)  | 0.05(4)         | 0.09(4) | 0.07(4)         |
| Cl    | 19.2(5)         | 14.1(4) | 14.6(4)  | 8.8(3)          | 1.3(3)  | 1.2(3)          |
| S(1)  | 3.2(1)          | 4.3(1)  | 2.95(9)  | -0.46(8)        | 0.13(8) | -0.53(8)        |
| S(2)  | 3.6(1)          | 5.3(1)  | 3.17(9)  | 1.19(9)         | 0.66(8) | 0.04(8)         |
| S(3)  | 3.2(1)          | 3.9(1)  | 3.65(9)  | 0.17(8)         | 0.58(8) | 0.85(8)         |
| P     | 3.5(1)          | 3.5(1)  | 4.6(1)   | 0.23(9)         | 0.3(1)  | 0.20(9)         |
| F(1)  | 8.4(4)          | 10.0(4) | 4.7(3)   | 1.1(3)          | 1.2(3)  | 0.4(3)          |
| F(2)  | 4.3(3)          | 7.4(3)  | 7.0(3)   | 1.2(2)          | -1.5(2) | -0.3(2)         |
| F(3)  | 7.3(4)          | 11.6(5) | 7.6(4)   | -0.4(3)         | 3.0(3)  | 2.6(3)          |
| F(4)  | 4.0(3)          | 7.3(3)  | 11.3(4)  | -0.1(3)         | -3.3(3) | -2.2(3)         |
| F(5)  | 5.3(3)          | 3.8(2)  | 8.0(3)   | 0.1(2)          | -0.7(2) | -1.0(2)         |
| F(6)  | 9.0(4)          | 3.8(3)  | 14.1(5)  | 0.4(3)          | -2.1(4) | 1.2(3)          |
| 0(1)  | 4.7(4)          | 5.3(3)  | 3.2(3)   | -1.2(3)         | -0.0(2) | -0.8(2)         |
| 0(2)  | 7.8(5)          | 3.5(3)  | 6.9(4)   | 1.1(3)          | 0.5(3)  | 0.1(3)          |
| N(1)  | 2.9(4)          | 4.9(4)  | 5.6(4)   | -1.7(3)         | -0.2(3) | 0.1(3)          |
| N(2)  | 2.5(4)          | 4.3(3)  | 2.8(3)   | -0.0(3)         | 0.2(3)  | -0.7(3)         |
| N(3)  | 3.9(4)          | 3.3(3)  | 5.0(4)   | 0.8(3)          | 0.3(3)  | 0.2(3)          |
| C(1)  | 3.0(4)          | 2.9(4)  | 3.4(4)   | 0.3(3)          | 0.8(3)  | 0.6(3)          |
| C(2)  | 4.2(5)          | 3.6(5)  | 3.3(4)   | -0.6(4)         | 0.2(3)  | -0.4(3)         |
| C(3)  | 3.8(5)          | 2,9(4)  | 3.9(4)   | -0.3(3)         | 0.1(3)  | 0.3(3)          |
| C(4)  | 4.5(6)          | 9.0(7)  | 6.8(6)   | -2.5(5)         | 2.5(5)  | 0.8(5)          |
| C(5)  | 6.1(7)          | 6.7(6)  | 5.5(5)   | -2.3(5)         | -1.5(5) | -1.8(5)         |
| C(6)  | 3.2(5)          | 3.0(4)  | 2.2(3)   | -0.1(3)         | -0.4(3) | -0.4(3)         |
| C(7)  | 3.0(5)          | 5.0(5)  | 5.3(5)   | 1.6(4)          | 0.1(4)  | 0.2(4)          |
| C(8)  | 3.4(5)          | 6.4(5)  | 3.5(4)   | -1.0(4)         | 1.7(3)  | 0.4(4)          |
| C(9)  | 2.4(4)          | 3.1(4)  | 2.8(3)   | -0.0(3)         | -0.1(3) | -0.4(3)         |
| C(10) | 6.7(7)          | 6.7(6)  | 6.7(6)   | 1.9(5)          | 4.5(5)  | 0.1(5)          |
| C(11) | 5.6(6)          | 4.9(5)  | 8.0(6)   | 2.3(4)          | 0.3(5)  | 2.9(5)          |
| C(12) | 11.0(12)        | 9.3(9)  | 14.7(14) | 3.9(8)          | 3.6(9)  | 3.0(8)          |

<sup>a</sup> Anisotropic temperature factors of the form  $\exp[-0.25(B_{11}h^2a^{*2} + B_{22}k^2b^{*2} + B_{33}l^2c^{*2} + 2B_{12}hka^*b^* + 2B_{13}hla^*c^* + 2B_{23}klb^*c^*)]$  were used for these atoms.

where  $w = \sigma(F_0)^{-2}$ . The atomic scattering factors used were from Cromer and Mann [3a] with corrections for anomalous scattering by Fe, Cl, S, and P atoms [3b]. Positional and thermal parameters for all atoms are presented in Table 2.

÷.

| TABLE 3     |           |          |        |
|-------------|-----------|----------|--------|
| INTERATOMIC | DISTANCES | AND BOND | ANGLES |

| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |             |                                              |                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------|----------------------------------------------|--------------------|
| $ \begin{split} F_{e} = S(1) & 2.344(3) & S(1) - F_{e} - S(2) & 74.7(1) \\ F_{e} = S(1) & 2.347(3) & S(1) - F_{e} - C(1) & 169.5(3) \\ F_{e} = C(1) & 1.777(9) & S(1) - F_{e} - C(2) & 88.4(3) \\ F_{e} - C(2) & 1.808(10) & S(1) - F_{e} - C(2) & 85.3(2) \\ F_{e} - C(2) & 1.974(8) & S(2) - F_{e} - C(1) & 96.5(2) \\ S(1) - C(3) & 1.718(9) & S(2) - F_{e} - C(2) & 96.5(3) \\ S(2) - C(3) & 1.718(9) & S(2) - F_{e} - C(2) & 96.5(2) \\ S(3) - C(6) & 1.760(8) & C(1) - F_{e} - C(2) & 96.5(2) \\ S(3) - C(6) & 1.760(8) & C(1) - F_{e} - C(3) & 94.5(3) \\ O(1) - C(1) & 1.144(9) & C(1) - F_{e} - C(6) & 94.9(3) \\ O(2) - C(2) & 1.130(9) & C(1) - F_{e} - C(6) & 100.7(3) \\ N(1) - C(3) & 1.317(10) & C(2) - F_{e} - C(6) & 100.7(3) \\ N(1) - C(3) & 1.317(10) & C(2) - F_{e} - C(6) & 171.4(3) \\ N(2) - C(6) & 1.305(9) & F_{e} - S(1) - C(3) & 86.7(3) \\ N(2) - C(1) & 1.485(11) & C(2) - F_{e} - C(9) & 71.7(3) \\ N(2) - C(1) & 1.485(10) & F_{e} - S(2) - C(3) & 86.7(3) \\ N(2) - C(1) & 1.300(9) & C(3) - N(1) - C(4) & 121.0(8) \\ N(3) - C(10) & 1.300(9) & C(3) - N(1) - C(4) & 121.0(8) \\ N(3) - C(10) & 1.300(9) & C(4) - N(1) - C(5) & 118.2(8) \\ P_{e} - F(2) & 1.393(6) & C(6) - N(2) - C(8) & 123.6(7) \\ P_{e} - F(2) & 1.593(6) & C(6) - N(2) - C(8) & 114.5(6) \\ P_{e} - F_{1}(3) & 1.569(6) & C(7) - N(2) - C(8) & 114.5(6) \\ P_{e} - F_{1}(3) & 1.569(6) & C(7) - N(3) - C(11) & 122.4(7) \\ P_{e} - F_{1}(6) & 1.582(6) & C(9) - N(3) - C(11) & 122.4(7) \\ P_{e} - F_{1}(6) & 1.582(6) & C(9) - N(3) - C(11) & 122.4(7) \\ P_{e} - F_{1}(6) & 1.582(6) & C(9) - N(3) - C(11) & 122.4(7) \\ P_{e} - F_{1}(6) & 1.582(6) & C(9) - N(3) - C(11) & 122.4(7) \\ P_{e} - F_{1}(6) & 1.582(6) & C(9) - N(3) - C(11) & 124.3(6) \\ S(1) - C(1) & 3.090(9) & F(1) - P_{e} - F(3) & 100.9(4) \\ F_{e} - C(6) - N(2) & 118.9(6) \\ F_{e} - C(6) - N(3) & 117.8(6) \\ S(1) - C(1) & 3.195(9) & F(1) - P_{e} - F(3) & 89.0(3) \\ F_{1} - C(6) & 3.293(9) & F(1) - P_{e} - F(3) & 89.0(3) \\ F(1) - C(1) & 3.294(6) & F(2) - P_{e} - F(3) & 89.0(3) \\ F(1) - C(1) & 3.293(8) & F(2) - P_{e} - F(3) & 89.0(3) \\ F(1) - C(1) & 3.293(9) & F(1) - P$                                                                                                                                                                                                | A. Bonding distanc | es (Å)      | C. Bond angles (degrees)                     |                    |
| $ \begin{array}{c} r=s(1) \\ r=s(1) \\ r=s(1) \\ r=c(1) \\ r=c(1) \\ r=c(2) \\ r=c(3) \\ r=c(4) \\ r=c(2) \\ r=c(6) \\ r=c($ | FeS(1)             | 2.344(3)    | S(1)-Fe-S(2)                                 | 74.7(1)            |
| $ \begin{split} F_{e} - C(1) & 1.77(0) & S(1) - F_{e} - C(2) & 88.4(3) \\ F_{e} - C(3) & 1.974(8) & S(1) - F_{e} - C(6) & 93.2(2) \\ F_{e} - C(3) & 1.718(8) & S(2) - F_{e} - C(1) & 96.5(2) \\ S(1) - C(3) & 1.718(8) & S(2) - F_{e} - C(2) & 85.5(3) \\ S(2) - C(3) & 1.718(8) & S(2) - F_{e} - C(2) & 96.5(2) \\ S(3) - C(6) & 1.760(8) & C(1) - F_{e} - C(9) & 98.5(2) \\ S(3) - C(6) & 1.760(8) & C(1) - F_{e} - C(9) & 98.5(2) \\ S(3) - C(6) & 1.760(8) & C(1) - F_{e} - C(9) & 90.5(3) \\ O(1) - C(1) & 1.144(9) & C(1) - F_{e} - C(6) & 100.7(3) \\ O(1) - C(1) & 1.144(9) & C(2) - F_{e} - C(6) & 100.7(3) \\ O(1) - C(1) & 1.144(9) & C(2) - F_{e} - C(6) & 100.7(3) \\ N(1) - C(3) & 1.317(10) & C(2) - F_{e} - C(9) & 73.7(3) \\ N(2) - C(6) & 1.305(9) & F_{e} - S(1) - C(3) & 86.7(3) \\ N(2) - C(6) & 1.495(9) & C(6) - S(3) - C(9) & 84.1(4) \\ N(3) - C(10) & 1.300(9) & C(3) - N(1) - C(5) & 118.2(6) \\ N(2) - C(1) & 1.300(9) & C(3) - N(1) - C(5) & 118.2(6) \\ N(3) - C(10) & 1.300(11) & C(3) - N(1) - C(5) & 118.2(6) \\ P_{e}F(2) & 1.593(6) & C(6) - N(2) - C(8) & 123.6(7) \\ P_{e}F(2) & 1.593(6) & C(6) - N(2) - C(8) & 123.6(7) \\ P_{e}F(3) & 1.569(6) & C(7) - N(3) - C(11) & 122.4(7) \\ P_{e}F(6) & 1.582(6) & C(9) - N(3) - C(11) & 122.4(7) \\ P_{e}F(6) & 1.582(6) & C(9) - N(3) - C(11) & 122.4(7) \\ P_{e}F(6) & 1.582(6) & C(9) - N(3) - C(11) & 123.8(7) \\ F_{e}-C(6) - S(3) & 100.8(4) \\ F_{e}-C(6) - N(2) & 118.8(5) \\ S(1) - C(1) & 3.08(9) & F(1) - P_{e}-F(3) & 89.7(3) \\ F(4) - C(7) & 3.019(10) & F(1) - P_{e}-F(3) & 89.7(3) \\ F(4) - C(6) & 3.128(9) & F(1) - P_{e}-F(3) & 89.7(3) \\ F(4) - C(6) & 3.293(9) & F(2) - P_{e}-F(3) & 89.7(3) \\ F(2) - C(6) & 3.293(9) & F(2) - P_{e}-F(3) & 89.7(3) \\ F(2) - C(6) & 3.293(9) & F(2) - P_{e}-F(3) & 89.7(3) \\ F(4) - P_{e}-F(6) & 89.2(3) \\ F$                                                                                                                                                                                         | Fe-S(1)            | 2,347(3)    | S(1)-Fe-C(1)                                 | 169.5(3)           |
| $ \begin{array}{c} r_{e-C(2)} & 1.808(10) & S(1) - F_{e-C(3)} & 33.2(2) \\ F_{e-C(3)} & 1.954(8) & S(1) - F_{e-C(3)} & 85.3(2) \\ F_{e-C(3)} & 1.718(8) & S(2) - F_{e-C(3)} & 85.5(3) \\ S(1) - C(3) & 1.718(8) & S(2) - F_{e-C(3)} & 85.5(3) \\ S(3) - C(4) & 1.760(8) & S(2) - F_{e-C(3)} & 98.5(2) \\ S(3) - C(9) & 1.760(8) & S(2) - F_{e-C(3)} & 98.5(2) \\ S(3) - C(9) & 1.760(8) & S(2) - F_{e-C(3)} & 98.5(3) \\ O(1) - C(1) & 1.144(9) & C(1) - F_{e-C(6)} & 94.9(3) \\ O(2) - C(2) & 1.130(9) & C(1) - F_{e-C(6)} & 100.7(3) \\ N(1) - C(4) & 1.468(11) & C(2) - F_{e-C(6)} & 171.4(3) \\ N(1) - C(3) & 1.317(10) & C(2) - F_{e-C(6)} & 171.4(3) \\ N(1) - C(4) & 1.468(11) & C(2) - F_{e-C(9)} & 73.7(3) \\ N(2) - C(7) & 1.483(10) & F_{e-S(2)} - C(3) & 86.7(3) \\ N(2) - C(7) & 1.483(10) & F_{e-S(2)} - C(3) & 86.7(3) \\ N(2) - C(7) & 1.483(10) & F_{e-S(2)} - C(3) & 86.7(3) \\ N(3) - C(10) & 1.300(9) & C(3) - N(1) - C(4) & 120.7(8) \\ N(3) - C(10) & 1.500(11) & C(3) - N(1) - C(4) & 120.7(8) \\ N(3) - C(10) & 1.500(11) & C(3) - N(1) - C(3) & 114.5(6) \\ P - F(1) & 1.587(6) & C(6) - N(2) - C(1) & 121.9(6) \\ P - F(3) & 1.589(6) & C(7) - N(2) - C(8) & 113.5(7) \\ P - F(6) & 1.584(6) & C(9) - N(3) - C(10) & 121.5(7) \\ P - F(6) & 1.584(6) & C(9) - N(3) - C(10) & 121.5(7) \\ P - F(6) & 1.584(6) & C(9) - N(3) - C(11) & 122.4(7) \\ P - F(6) & 1.584(6) & C(1) - N(3) - C(11) & 123.6(7) \\ F_{e-C(6)} - S(3) & 100.9(4) \\ F(4) - C(7) & 3.019(10) & F_{e-C(3)} - O(2) & 118.9(6) \\ S(1) - C(3) - S(2) & 111.8(5) \\ E. Nonbonding distances less & S(1) - C(3) - N(3) & 114.5(6) \\ F(4) - C(7) & 3.019(10) & F_{e-C(9)} - N(3) & 142.0(6) \\ S(3) - C(6) - N(2) & 110.9(6) \\ S(3) - C(6) - N(2) & 110.9(6) \\ S(3) - C(6) - N(2) & 110.9(6) \\ S(3) - C(6) - S(3) & 100.9(4) \\ F(4) - C(7) & 3.019(10) & F_{e-C} - P - F(3) & 130.3(4) \\ F(1) - C(1) & 3.195(9) & F(1) - P - F(3) & 17.2(4) \\ O(1) - C(2) & 3.293(1) & F(2) - P - F(3) & 89.0(3) \\ F(4) - P - F(6) & 89.2(3) \\ F($                                                                                                                                                                                         | FeC(1)             | 1.777(9)    | S(1)-Fe-C(2)                                 | 88.4(3)            |
| $ \begin{array}{cccc} \hline re-c(6) & 1.954(8) & S(1)-Fe-C(6) & 85.3(2) \\ Fe-C(9) & 1.974(8) & S(2)-Fe-C(1) & 96.5(2) \\ S(1)-C(3) & 1.718(8) & S(2)-Fe-C(6) & 166.3(2) \\ S(2)-C(3) & 1.718(8) & S(2)-Fe-C(6) & 195.5(3) \\ S(2)-C(3) & 1.718(8) & S(2)-Fe-C(6) & 195.5(3) \\ S(3)-C(6) & 1.760(8) & C(1)-Fe-C(2) & 96.6(3) \\ O(1)-C(1) & 1.144(9) & C(1)-Fe-C(6) & 90.5(3) \\ O(1)-C(1) & 1.144(9) & C(1)-Fe-C(9) & 90.5(3) \\ O(1)-C(1) & 1.144(9) & C(1)-Fe-C(9) & 90.5(3) \\ O(1)-C(1) & 1.144(9) & C(2)-Fe-C(9) & 171.4(3) \\ N(1)-C(4) & 1.465(11) & C(2)-Fe-C(9) & 171.4(3) \\ N(1)-C(5) & 1.438(10) & Fe-S(1)-C(3) & 86.6(3) \\ N(2)-C(6) & 1.305(9) & Fe-S(1)-C(3) & 86.6(3) \\ N(2)-C(6) & 1.305(9) & Fe-S(1)-C(3) & 86.7(3) \\ N(2)-C(6) & 1.300(9) & C(3)-N(1)-C(4) & 121.0(8) \\ N(3)-C(10) & 1.500(11) & C(3)-N(1)-C(5) & 118.2(8) \\ P-F(1) & 1.587(6) & C(6)-N(2)-C(8) & 114.5(6) \\ P-F(2) & 1.593(6) & C(6)-N(2)-C(8) & 114.5(6) \\ P-F(3) & 1.592(6) & C(1)-N(2)-C(8) & 114.5(6) \\ P-F(3) & 1.584(5) & C(9)-N(3)-C(11) & 122.4(7) \\ P-F(6) & 1.582(6) & C(1)-N(3)-C(11) & 122.4(7) \\ P-F(6) & 1.582(6) & C(1)-N(3)-C(11) & 122.4(7) \\ P-F(6) & 1.584(5) & C(9)-N(3)-C(11) & 122.4(7) \\ P-F(6) & 1.584(5) & C(9)-N(3) & 117.8(6) \\ C(12)-C(12) & 1.754(14) & Fe-C(1)-O(1) & 178.6(7) \\ C(12)-C(12) & 1.754(14) & Fe-C(1)-O(1) & 123.8(7) \\ Fe-C(6)-N(2) & 110.9(6) \\ S(3)-C(6)-N(2) & 110.9(6) \\ S(3)-C(6)-N(2) & 110.9(6) \\ S(3)-C(6)-N(3) & 117.8(6) \\ O(1)-N(2) & 3.080(9) & F(1)-P-F(3) & 177.2(4) \\ O(1)-C(6) & 3.189(9) & F(1)-P-F(3) & 177.2(4) \\ O(1)-C(6) & 3.189(9) & F(1)-P-F(3) & 177.2(4) \\ O(1)-C(6) & 3.189(9) & F(1)-P-F(3) & 80.0(3) \\ F(2)-C(6) & 3.293(9) & F(2)-P-F(3) & 80.0(3) \\ F(3)-P-F(6) & 92.5(4) \\ F(4)-P-F(6) & 92.5(4) \\ F(4)-P-F$                                                                                                                                                                             | Fe-C(2)            | 1.808(10)   | S(1)-Fe-C(6)                                 | 93.2(2)            |
| $ \begin{array}{c} re-c(a) \\ re-c(b) \\ re-c(c) $                        | Fe-C(6)            | 1.954(8)    | S(1)-Fe-C(9)                                 | 85.3(2)            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Fe                 | 1.974(8)    | S(2)-Fe-C(1)                                 | 96.5(2)            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S(1) - C(3)        | 1.718(8)    | S(2)-Fe-C(2)                                 | 85.5(3)            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S(2) - C(3)        | 1.718(9)    | S(2)-Fe-C(6)                                 | 166.3(2)           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S(3)-C(6)          | 1.760(8)    | S(2)-Fe-C(9)                                 | 98.5(2)            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S(3)-C(9)          | 1.760(8)    | C(1)-Fe-C(2)                                 | 96.6(3)            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | O(1) - C(1)        | 1.144(9)    | C(1)-Fe-C(6)                                 | 94.9(3)            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | O(2) - C(2)        | 1.130(9)    | C(1)-Fe-C(9)                                 | 90.5(3)            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N(1)-C(3)          | 1.317(10)   | C(2)-Fe-C(6)                                 | 100.7(3)           |
| $\begin{split} N(1)-C(5) & 1.498(11) & C(6)-Fe-C(9) & 73.7(3) \\ N(2)-C(6) & 1.305(9) & Fe-S(1)-C(3) & 86.6(2) \\ N(3)-C(7) & 1.483(10) & Fe-S(2)-C(3) & 84.1(4) \\ N(3)-C(10) & 1.500(11) & C(3)-N(1)-C(4) & 121.0(8) \\ N(3)-C(10) & 1.500(11) & C(3)-N(1)-C(5) & 120.7(8) \\ N(3)-C(11) & 1.508(10) & C(4)-N(1)-C(5) & 118.2(8) \\ P-F(1) & 1.587(6) & C(6)-N(2)-C(7) & 112.19(6) \\ P-F(2) & 1.593(6) & C(7)-N(2)-C(8) & 123.6(7) \\ P-F(3) & 1.569(6) & C(7)-N(2)-C(8) & 114.5(6) \\ P-F(4) & 1.592(6) & C(9)-N(3)-C(11) & 122.4(7) \\ P-F(5) & 1.584(5) & C(9)-N(3)-C(11) & 122.4(7) \\ P-F(6) & 1.582(6) & C(10)-N(3)-C(11) & 128.4(7) \\ C1-C(12) & 1.754(14) & Fe-C(1)-O(1) & 178.6(7) \\ C1-C(12) & 1.754(14) & Fe-C(1)-O(1) & 178.6(7) \\ C1-C(12) & 1.754(14) & Fe-C(1)-O(1) & 124.3(6) \\ fhan 3.30 A & S(2)-C(3)-N(1) & 123.8(7) \\ Fe-C(6)-S(3) & 100.9(4) \\ Fe-C(6)-S(3) & 100.9(4) \\ Fe-C(9)-S(3) & 100.1(4) \\ F(4)-C(7) & 3.019(10) & Fe-C(9)-N(3) & 142.0(6) \\ Fe-C(9)-S(3) & 100.1(4) \\ F(4)-C(6) & 3.189(9) & F(1)-P-F(2) & 89.7(3) \\ F(3)-C(8) & 3.177(10) & F(1)-P-F(3) & 177.2(4) \\ O(1)-C(6) & 3.189(9) & F(1)-P-F(3) & 177.2(4) \\ O(1)-C(6) & 3.129(9) & F(1)-P-F(5) & 89.0(3) \\ F(2)-C(2) & 3.279(10) & F(2)-P-F(3) & 89.0(3) \\ F(2)-C(2) & 3.293(11) & F(2)-P-F(6) & 89.7(3) \\ F(2)-C(2) & 3.293(1) & F(2)-P-F(6) & 89.7(3) \\ F(4)-P-F(5) & 8.2(3) \\ F(4)-P-F(6) & 91.9(4) \\ F(4)$                                                                                                                                                                       | N(1)-C(4)          | 1.465(11)   | C(2)—Fe—C(9)                                 | 171.4(3)           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N(1)-C(5)          | 1.498(11)   | C(6)-Fe-C(9)                                 | 73.7(3)            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N(2)-C(6)          | 1.305(9)    | Fe-S(1)-C(3)                                 | 86.6(3)            |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N(2)-C(7)          | 1.483(10)   | Fe—S(2)C(3)                                  | 86.7(3)            |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N(2)-C(8)          | 1.495(9)    | C(6)—S(3)—C(9)                               | 84.1(4)            |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N(3)-C(9)          | 1.300(9)    | C(3)-N(1)-C(4)                               | 121.0(8)           |
| $\begin{split} & N(3)-C(11) & 1.508(10) & C(4)-N(1)-C(5) & 118.2(8) \\ & P-F(1) & 1.587(6) & C(6)-N(2)-C(7) & 121.9(6) \\ & P-F(2) & 1.593(6) & C(6)-N(2)-C(8) & 123.6(7) \\ & P-F(3) & 1.569(6) & C(7)-N(2)-C(8) & 114.5(6) \\ & P-F(4) & 1.592(6) & C(9)-N(3)-C(11) & 122.4(7) \\ & P-F(5) & 1.584(5) & C(9)-N(3)-C(11) & 116.0(7) \\ & C(-C(12) & 1.754(14) & Fe-C(1)-O(1) & 178.6(7) \\ & C(12)-C(12)' & 1.386(25) & Fe-C(2)-O(2) & 176.8(8) \\ & S(1)-C(3)-S(2) & 111.8(5) \\ & B.  \textit{Nonbonding distances less} & S(1)-C(3)-N(1) & 123.8(7) \\ & Fe-C(6)-N(2) & 118.9(6) \\ & Fe-C(6)-N(2) & 118.9(6) \\ & Fe-C(6)-N(2) & 118.9(6) \\ & Fe-C(9)-N(3) & 100.9(4) \\ & Fe-C(9)-N(3) & 100.1(4) \\ & F(4)-C(7) & 3.019(10) & Fe-C(9)-N(3) & 142.0(6) \\ & Fe-C(9)-S(3) & 100.1(4) \\ & F(4)-C(7) & 3.019(10) & Fe-C(9)-N(3) & 117.8(6) \\ & O(1)-N(2) & 3.080(9) & F(1)-P-F(2) & 89.7(3) \\ & C(3)-C(6) & 3.189(9) & F(1)-P-F(3) & 177.2(4) \\ & O(1)-C(6) & 3.195(9) & F(1)-P-F(3) & 89.0(3) \\ & F(2)-C(2) & 3.223(10) & F(2)-P-F(3) & 89.0(3) \\ & F(2)-C(2) & 3.293(11) & F(2)-P-F(3) & 89.0(3) \\ & F(2)-C(5) & 3.293(11) & F(2)-P-F(6) & 89.2(3) \\ & F(3)-P-F(6) & 92.5(4) \\ & F(4)-P-F(6) & 91.9(3) \\ & F(4)-P-F(6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N(3)-C(10)         | 1.500(11)   | C(3)-N(1)-C(5)                               | 120.7(8)           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N(3)-C(11)         | 1.508(10)   | C(4)—N(1)—C(5)                               | 118.2(8)           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P-F(1)             | 1.587(6)    | C(6)—N(2)—C(7)                               | 121.9(6)           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P-F(2)             | 1,593(6)    | C(6)-N(2)-C(8)                               | 123.6(7)           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P—F(3)             | 1.569(6)    | C(7)—N(2)—C(8)                               | 114.5(6)           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P-F(4)             | 1.592(6)    | C(9)-N(3)-C(10)                              | 121.5(7)           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P-F(5)             | 1.584(5)    | C(9)-N(3)-C(11)                              | 122.4(7)           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P-F(6)             | 1.582(6)    | C(10)—N(3)—C(11)                             | 116.0(7)           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cl-C(12)           | 1.754(14)   | FeC(1)O(1)                                   | 178.6(7)           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C(12)-C(12)        | 1.386(25)   | FeC(2)O(2)                                   | 176.8(8)           |
| B. Nonbonding distances less $S(1)-C(3)-N(1)$ $124.3(6)$ than 3.30 Å $S(2)-C(3)-N(1)$ $123.8(7)$ Fe-C(6)-S(3) $100.9(4)$ Fe-C(6)-N(2) $140.2(6)$ $S(3)-C(6)-N(2)$ $118.9(6)$ Fe-C(7) $3.019(10)$ Fe-C(9)-S(3) $100.1(4)$ F(2)O(1) $3.069(8)$ $S(3)-C(9)-N(3)$ $117.8(6)$ $O(1)-N(2)$ $3.080(9)$ F(1)-P-F(2) $89.7(3)$ F(3)C(8) $3.177(10)$ F(1)-P-F(3) $177.2(4)$ $O(1)C(6)$ $3.189(9)$ F(1)-P-F(5) $89.0(3)$ F(5)-C(5) $3.224(10)$ F(1)-P-F(3) $89.0(3)$ F(2)C(2) $3.279(10)$ F(2)P-F(4) $178.9(3)$ F(2)C(5) $3.293(11)$ F(2)-P-F(5) $89.2(3)$ F(2)C(6) $3.293(9)$ F(3)-P-F(5) $88.4(3)$ F(3)-P-F(5) $89.2(3)$ F(4)-P-F(5) $89.2(3)$ F(4)-P-F(5) $89.2(3)$ F(4)-P-F(6) $91.9(3)$ F(4)-P-F(6) $91.9(3)$ F(4)-P-F(6) $178.6(4)$ CI-C(12)' $117.9(9)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |             | S(1)C(3)S(2)                                 | 111.8(5)           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B. Nonbonding dist | tances less | S(1)-C(3)-N(1)                               | 124.3(6)           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | than 3.30 Å        |             | S(2)-C(3)-N(1)                               | 123.8(7)           |
| Fe-C(6)-N(2) 140.2(6) $S(3)-C(6)-N(2) 118.9(6)$ $Fe-C(9)-S(3) 100.1(4)$ $F(4)-C(7) 3.019(10) Fe-C(9)-N(3) 142.0(6)$ $F(2)0(1) 3.069(8) S(3)-C(9)-N(3) 117.8(6)$ $O(1)N(2) 3.080(9) F(1)-P-F(2) 89.7(3)$ $F(3)C(8) 3.177(10) F(1)-P-F(3) 177.2(4)$ $O(1)C(6) 3.189(9) F(1)-P-F(4) 90.3(4)$ $F(1)O(1) 3.195(9) F(1)-P-F(5) 89.0(3)$ $F(5)C(5) 3.224(10) F(1)-P-F(6) 90.0(4)$ $S(1)O(1) 3.274(6) F(2)-P-F(3) 89.0(3)$ $F(2)C(2) 3.279(10) F(2)-P-F(4) 178.9(3)$ $F(2)C(5) 3.293(11) F(2)-P-F(5) 89.7(3)$ $F(2)C(5) 3.293(11) F(2)-P-F(5) 89.7(3)$ $F(2)C(5) 3.293(9) F(3)-P-F(4) 91.1(4)$ $F(3)-P-F(6) 92.5(4)$ $F(4)-P-F(6) 91.9(3)$ $F(4)-P-F(6) 91.9(3)$ $F(4)-P-F(6) 91.9(3)$ $F(5)-P-F(6) 178.6(4)$ $CI-C(12)-C(12)' 117.9(9)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |             | FeC(6)S(3)                                   | 100.9(4)           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |             | FeC(6)N(2)                                   | 140.2(6)           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |             | S(3)C(6)N(2)                                 | 118.9(6)           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    |             | Fe—C(9)—S(3)                                 | 100.1(4)           |
| $\begin{array}{ccccccc} F(2) \cdots O(1) & 3.069(8) & S(3) - C(9) - N(3) & 117.8(6) \\ O(1) \cdots N(2) & 3.080(9) & F(1) - P - F(2) & 89.7(3) \\ F(3) \cdots C(8) & 3.177(10) & F(1) - P - F(3) & 177.2(4) \\ O(1) \cdots C(6) & 3.189(9) & F(1) - P - F(4) & 90.3(4) \\ F(1) \cdots O(1) & 3.195(9) & F(1) - P - F(5) & 89.0(3) \\ F(5) \cdots C(5) & 3.224(10) & F(1) - P - F(6) & 90.0(4) \\ S(1) \cdots O(1) & 3.274(6) & F(2) - P - F(3) & 89.0(3) \\ F(2) \cdots C(2) & 3.279(10) & F(2) - P - F(4) & 178.9(3) \\ F(2) \cdots C(2) & 3.280(8) & F(2) - P - F(5) & 89.7(3) \\ F(2) \cdots C(5) & 3.293(11) & F(2) - P - F(6) & 89.2(3) \\ F(2) \cdots C(6) & 3.293(9) & F(3) - P - F(6) & 91.1(4) \\ F(3) - P - F(6) & 92.5(4) \\ F(3) - P - F(6) & 91.9(3) \\ F(4) - P - F(6) & 91.9(3) \\ F(4) - P - F(6) & 91.9(3) \\ F(5) - P - F(6) & 178.6(4) \\ C1 - C(12) - C(12)' & 117.9(9) \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F(4)C(7)           | 3.019(10)   | Fe—C(9)—N(3)                                 | 142.0(6)           |
| $\begin{array}{ccccccc} O(1) & \cdots N(2) & 3.080(9) & F(1) - P - F(2) & 89.7(3) \\ F(3) - \cdots C(8) & 3.177(10) & F(1) - P - F(3) & 177.2(4) \\ O(1) - \cdots C(6) & 3.189(9) & F(1) - P - F(3) & 90.3(4) \\ F(1) - \cdots O(1) & 3.195(9) & F(1) - P - F(5) & 89.0(3) \\ F(5) - \cdots C(5) & 3.224(10) & F(1) - P - F(6) & 90.0(4) \\ S(1) - \cdots O(1) & 3.274(6) & F(2) - P - F(3) & 89.0(3) \\ F(2) - \cdots C(2) & 3.29(10) & F(2) - P - F(4) & 178.9(3) \\ F(2) - \cdots C(2) & 3.280(8) & F(2) - P - F(5) & 89.7(3) \\ F(2) - \cdots C(5) & 3.293(11) & F(2) - P - F(6) & 89.2(3) \\ F(2) - \cdots C(6) & 3.293(9) & F(3) - P - F(4) & 91.1(4) \\ F(3) - P - F(5) & 88.4(3) \\ F(3) - P - F(6) & 92.5(4) \\ F(4) - P - F(6) & 91.9(3) \\ F(4) - P - F(6) & 91.9(3) \\ F(5) - P - F(6) & 91.9(3) \\ F(5) - P - F(6) & 178.6(4) \\ C1 - C(12) - C(12)' & 117.9(9) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | F(2)…O(1)          | 3.069(8)    | S(3)-C(9)-N(3)                               | 117.8(6)           |
| $\begin{array}{ccccccc} F(3) & 3.177(10) & F(1) - P - F(3) & 177.2(4) \\ O(1) - C(6) & 3.189(9) & F(1) - P - F(4) & 90.3(4) \\ F(1) - O(1) & 3.195(9) & F(1) - P - F(5) & 89.0(3) \\ F(5) - C(5) & 3.224(10) & F(1) - P - F(6) & 90.0(4) \\ S(1) - O(1) & 3.274(6) & F(2) - P - F(3) & 89.0(3) \\ F(2) - C(2) & 3.279(10) & F(2) - P - F(4) & 178.9(3) \\ F(2) - N(2) & 3.280(8) & F(2) - P - F(5) & 89.7(3) \\ F(2) - C(5) & 3.293(11) & F(2) - P - F(6) & 89.2(3) \\ F(2) - C(6) & 3.293(9) & F(3) - P - F(4) & 91.1(4) \\ F(3) - P - F(6) & 92.5(4) \\ F(3) - P - F(6) & 92.5(4) \\ F(4) - P - F(6) & 91.9(3) \\ F(5) - P - F(6) & 91.9(3) \\ F(5) - P - F(6) & 178.6(4) \\ C1 - C(12) - C(12)' & 117.9(9) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | O(1)N(2)           | 3.080(9)    | F(1)—P—F(2)                                  | 89.7(3)            |
| $\begin{array}{ccccccc} O(1) &C(6) & 3.189(9) & F(1) - P - F(4) & 90.3(4) \\ F(1)O(1) & 3.195(9) & F(1) - P - F(5) & 89.0(3) \\ F(5)C(5) & 3.224(10) & F(1) - P - F(6) & 90.0(4) \\ S(1)O(1) & 3.274(6) & F(2) - P - F(6) & 89.0(3) \\ F(2)N(2) & 3.280(8) & F(2) - P - F(4) & 178.9(3) \\ F(2)N(2) & 3.293(11) & F(2) - P - F(5) & 89.7(3) \\ F(2)C(5) & 3.293(11) & F(2) - P - F(6) & 89.2(3) \\ F(2)C(6) & 3.293(9) & F(3) - P - F(4) & 91.1(4) \\ F(3) - P - F(5) & 88.4(3) \\ F(3) - P - F(6) & 92.5(4) \\ F(4) - P - F(6) & 91.9(3) \\ F(5) - P - F(6) & 178.6(4) \\ C1 - C(12) - C(12)' & 117.9(9) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | F(3)C(8)           | 3.177(10)   | F(1)—P—F(3)                                  | 177.2(4)           |
| $\begin{array}{ccccccc} F(1) & 3.195(9) & F(1) - P - F(5) & 89.0(3) \\ F(5) - C(5) & 3.224(10) & F(1) - P - F(6) & 90.0(4) \\ S(1) - O(1) & 3.274(6) & F(2) - P - F(6) & 89.0(3) \\ F(2) - C(2) & 3.279(10) & F(2) - P - F(3) & 89.0(3) \\ F(2) - C(2) & 3.280(8) & F(2) - P - F(5) & 89.7(3) \\ F(2) - C(5) & 3.293(11) & F(2) - P - F(6) & 89.2(3) \\ F(2) - C(6) & 3.293(9) & F(3) - P - F(4) & 91.1(4) \\ F(3) - P - F(5) & 88.4(3) \\ F(3) - P - F(5) & 89.2(3) \\ F(4) - P - F(6) & 92.5(4) \\ F(4) - P - F(6) & 91.9(3) \\ F(5) - P - F(6) & 178.6(4) \\ C1 - C(12) - C(12)' & 117.9(9) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | O(1)C(6)           | 3.189(9)    | F(1)—P—F(4)                                  | 90.3(4)            |
| $\begin{array}{ccccccc} F(5) & 3.224(10) & F(1) & \rightarrow F(6) & 90.0(4) \\ S(1) & \sim O(1) & 3.274(6) & F(2) & \rightarrow F(6) & 89.0(3) \\ F(2) & \sim C(2) & 3.279(10) & F(2) & \rightarrow F(3) & 89.0(3) \\ F(2) & \sim C(2) & 3.280(8) & F(2) & \rightarrow F(5) & 89.7(3) \\ F(2) & \sim C(5) & 3.293(11) & F(2) & \rightarrow F(6) & 89.2(3) \\ F(2) & \sim C(6) & 3.293(9) & F(3) & \rightarrow F(6) & 91.1(4) \\ & & & F(3) & \rightarrow F(6) & 92.5(4) \\ & & & & F(3) & \rightarrow F(6) & 92.5(4) \\ & & & & & F(4) & \rightarrow F(6) & 91.9(3) \\ F(5) & & & \rightarrow F(6) & 178.6(4) \\ & & & & & & C1 & -C(12) & -C(12)' & 117.9(9) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | F(1)O(1).          | 3.195(9)    | F(1)— <del>P—</del> F(5)                     | 89.0(3)            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | F(5)C(5)           | 3.224(10)   | F(1)-P-F(6)                                  | 90.0(4)            |
| $\begin{array}{cccccccc} F(2) & 3.279(10) & F(2) - P - F(4) & 178.9(3) \\ F(2) - N(2) & 3.280(8) & F(2) - P - F(5) & 89.7(3) \\ F(2) - C(5) & 3.293(11) & F(2) - P - F(6) & 89.2(3) \\ F(2) - C(6) & 3.293(9) & F(3) - P - F(4) & 91.1(4) \\ & F(3) - P - F(5) & 88.4(3) \\ & F(3) - P - F(5) & 89.2(3) \\ & F(4) - P - F(5) & 89.2(3) \\ & F(4) - P - F(6) & 91.9(3) \\ & F(5) - P - F(6) & 178.6(4) \\ & Cl - C(12) - C(12)' & 117.9(9) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S(1)…O(1)          | 3.274(6)    | F(2)-P-F(3)                                  | 89.0(3)            |
| $\begin{array}{ccccccc} F(2) & 3.280(8) & F(2) - P - F(5) & 89.7(3) \\ F(2) - C(5) & 3.293(11) & F(2) - P - F(6) & 89.2(3) \\ F(2) - C(6) & 3.293(9) & F(3) - P - F(6) & 91.1(4) \\ & & F(3) - P - F(5) & 88.4(3) \\ & & F(3) - P - F(6) & 92.5(4) \\ & & F(4) - P - F(6) & 89.2(3) \\ & & F(4) - P - F(6) & 91.9(3) \\ & & F(5) - P - F(6) & 178.6(4) \\ & & Cl - C(12) - C(12)' & 117.9(9) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | F(2)C(2)           | 3.279(10)   | F(2)-P-F(4)                                  | 178.9(3)           |
| $\begin{array}{cccccc} F(2) & 3.293(11) & F(2) - P - F(6) & 89.2(3) \\ F(2) - C(6) & 3.293(9) & F(3) - P - F(4) & 91.1(4) \\ & F(3) - P - F(5) & 88.4(3) \\ & F(3) - P - F(6) & 92.5(4) \\ & F(4) - P - F(6) & 89.2(3) \\ & F(4) - P - F(6) & 91.9(3) \\ & F(5) - P - F(6) & 178.6(4) \\ & Cl - C(12) - C(12)' & 117.9(9) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | F(2)N(2)           | 3.280(8)    | F(2)—P—F(5)                                  | 89.7(3)            |
| $\begin{array}{cccc} F(2) & 3.293(9) & F(3) - P - F(4) & 91.1(4) \\ & F(3) - P - F(5) & 88.4(3) \\ & F(3) - P - F(6) & 92.5(4) \\ & F(4) - P - F(6) & 89.2(3) \\ & F(4) - P - F(6) & 91.9(3) \\ & F(5) - P - F(6) & 178.6(4) \\ & Cl - C(12) - C(12)' & 117.9(9) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F(2)C(5)           | 3.293(11)   | F(2)—P—F(6)                                  | 89.2(3)            |
| $\begin{array}{cccc} F(3) & -P - F(5) & 88.4(3) \\ F(3) - P - F(6) & 92.5(4) \\ F(4) - P - F(5) & 89.2(3) \\ F(4) - P - F(6) & 91.9(3) \\ F(5) - P - F(6) & 178.6(4) \\ Cl - C(12) - C(12)' & 117.9(9) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F(2)C(6)           | 3.293(9)    | F(3)-P-F(4)                                  | 91.1(4)            |
| $\begin{array}{cccc} F(3) - P - F(6) & 92.5(4) \\ F(4) - P - F(5) & 89.2(3) \\ F(4) - P - F(6) & 91.9(3) \\ F(5) - P - F(6) & 178.6(4) \\ Cl - C(12) - C(12)' & 117.9(9) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    |             | F(3)—P—F(5)                                  | 88.4(3)            |
| F(4) - P - F(5)89.2(3) $F(4) - P - F(6)$ 91.9(3) $F(5) - P - F(6)$ 178.6(4) $Cl - C(12) - C(12)'$ 117.9(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | •           | F(3)—P—F(6)                                  | 92.5(4)            |
| $\begin{array}{ccc} F(4) - F(6) & 91.9(3) \\ F(5) - P - F(6) & 178.6(4) \\ Cl - C(12) - C(12)' & 117.9(9) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |             | r(4)                                         | 89.2(3)<br>01.0(2) |
| $\frac{r_{(5)}-r_{-r_{(6)}}}{Cl-C(12)-C(12)'} \qquad 178.6(4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |             | $\mathbf{F}(4) - \mathbf{F} - \mathbf{F}(6)$ | 31.3(3)            |
| C(-C(12) - C(12) = 11.3(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |             | r(3) - r - r(6)                              | 1170(0)            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |             |                                              |                    |

Interatomic distances and bond angles are given in Table 3\*.

Computer programs used in this study included a local program for data reduction as well as modified versions of Zalkin's FORDAP for Fourier maps, Ibers' NUCLS5 refinement program, the Martin-Busing-Levy ORFFE function and error program and Johnson's ORTEP plotting program.

### **Results and discussion**

The structure of the  $[Fe(CO)_2(S_2CNMe_2)(CNMe_2)_2S]^*$  cation is shown in Fig. 1. The contents of the unit cell consists of eight discrete complex cations and hexafluorophosphate anions with all atoms in general positions, and four dichloroethane solvent molecules, one half of each of which is related to the other half by a twofold rotation axis.

The crystal packing is determined mainly by electrostatic and Van der Waals forces, as shown by the intermolecular distances, the shortest of which are given in Table 3.

The iron atom of the complex cation is octahedrally coordinated, with the major distortions resulting from the small angles subtended by the chelating ligands (74.7° for the dithiocarbamate ligand and 73.7° for the dicarbene ligand). The bond distances and angles among the atoms of the carbonyl and dithiocarbamate ligands are all of the expected values; the carbonyl groups are essentially linear.

The most unusual feature of this complex is the unique chelating dicarbene ligand in which the two carbenoid carbon atoms are linked by a sulfur atom. Structurally, this ligand is related to the dicarbene ligand in the [(MeNC)<sub>4</sub>Fe- $(CNMeH)_2NMe]^{2+}$  ion [4], where the aminocarbene units are connected by a methylimino group. The Fe-C bonds to the dicarbene ligand in [Fe(CO).  $(S_2CNMe_2)(CNMe_2)_2S]^+$  (Fe-C(6), 1.954(8) Å; Fe-C(9), 1.974(8) Å; ave. 1.964 Å) are slightly shorter than those found in [(MeNC)\_Fe(CNMeH)\_NMe]<sup>2+</sup> (ave. 2.04 Å). This is expected since substitution of sulfur for nitrogen as a linking heteroatom in the (CNMe<sub>2</sub>)<sub>2</sub>X ligand should reduce carbon-heteroatom  $\pi$ -bonding and thus increase the potential for Fe–C  $\pi$ -interaction, resulting in shorter Fe-C bonds. These Fe-C distances in the present complex are also in the range observed for several other iron carbone complexes (1.88-2.01 Å)[5-8] and also may be compared with Fe-CNR<sub>2</sub> distances in several other complexes, viz. 1.902-1.914 Å in Fe<sub>2</sub>(CO)<sub>6</sub>(CNEt<sub>2</sub>)<sub>2</sub> [9], 1.877-1.898 Å to the bridging CNMe, group and 1.935 Å to the bridging thiocarboxamido group in Fe<sub>4</sub>(CO)<sub>12</sub>S(CSNMe<sub>2</sub>)(CNMe<sub>2</sub>) [10], and 1.876 Å to the chelating thiocarboxamido group in  $Fe(CO)_2(S_2CNMe_2)(CSNMe_2)$  [11]. It is worth noting that the Fe-C distances are distinctly shorter when the carbon atom is part of a three-membered ring  $(FeC(=NR_2)S)$  and  $FeC(=NR_2)Fe$ , 1.876–1.914 Å) than when it is part of a four-membered ring ( $FeC(=NR_2)SFe$ ,  $FeC(=NR_2)SC(=NR_2)$ , and  $FeC(=NR_2)NRC$ -(=NR<sub>2</sub>), 1.935–2.04 Å). This seems to indicate a relationship between metal-

<sup>\*</sup> The table of structure factors has been deposited as NAPS Document No. 03177 (14 pages). Order from ASIS/NAPS, c/o Microfiche Publications, P.O. Box 3513, Grand Central Station, New York, N.Y. 10017. A copy may be secured by citing the document number, remitting \$5 for photocopies or \$3 for microfiche. Advance payment is required. Make checks payable to Microfiche Publications.



Fig. 1. The structure of the [Fe(CO)<sub>2</sub>(S<sub>2</sub>CNMe<sub>2</sub>)(CNMe<sub>2</sub>)<sub>2</sub>S]<sup>+</sup> ion (50% probability ellipsoids).

carbon  $\pi$ -interaction (and resulting bond length) and ring size (and strain) in such systems. We have previously suggested such a relationship in another context [12].

The hexafluorophosphate ion in this structure is remarkably well-behaved for a species so prone to disorder. There is no evidence of disorder; the P-F bonds range over only 1.569-1.593 Å, none of the *cis*-F-P-F angles deviates by more than 1.6° from a right angle, and there is no important excess electron density in the neighborhood of the ion.

The  $C_2H_4Cl_2$  solvent molecule has a *gauche* configuration; the skew dihedral angle between the two C—C—Cl planes is 71.2°. The carbon—carbon bond in this molecule is remarkably short, only 1.386(25) Å.

#### Acknowledgment

This work was supported by grants (to W.K.D.) from the Research Corporation and from the Emory University Research Committee, and by the assistance of the Emory University Computing Center. W.K.D. also thanks Dr. J.A. Bertrand of the Georgia Institute of Technology for generously providing access to his facilities.

#### References

2 R.J. Doedens and J.A. Ibers, Inorg. Chem., 6 (1967) 204.

3 International Tables for X-ray Crystallography, Vol. IV, Kynoch Press, Birmingham, 1974: (a) p. 72-98; (b) p. 149-150.

<sup>1</sup> W.K. Dean, J. Organometal. Chem., 135 (1977) 195.

4 J. Miller, A.L. Balch, and J.H. Enemark, J. Amer. Chem. Soc., 93 (1971) 4613.

5 P.F. Lindley and O.S. Mills, J. Chem. Soc. A, (1969) 1279.

6 G. Huttner and W. Gartzke, Chem. Ber., 105 (1972) 2714.

7 W.M. Butler and J.H. Enemark, J. Organometal. Chem., 49 (1973) 233.

8 Y. Yamamoto, K. Aoki, and M. Yamazaki, J. Amer. Chem. Soc., 96 (1974) 2647.

9 G.C. Cash, R.C. Pettersen, and R.B. King, J. Chem. Soc. Chem. Commun., (1977) 30.

10 W.K. Dean and D.G. VanDerveer, J. Organometal. Chem., in press. 11 W.K. Dean and D.G. VanDerveer, J. Organometal. Chem., in press.

12 W.K. Dean, J.B. Wetherington, and J.W. Moncrief, Inorg. Chem., 15 (1966) 1976.